

Fraternité

Genome regions and metabolic processes associated with tick resistance in beef cattle

Pauline Martin¹, Thomas Hüe², Julien Mante³, Adeline Lescane⁴, Didier Boichard¹ and Michel Naves⁵

¹ Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France; ² Institut Agronomique néo-Calédonien (IAC), équipe ARBOREAL, New Caledonia, France; ³ France Limousin Sélection, Boisseuil, France; ⁴ Unité Néo-Calédonienne de sélection et de promotion des races bovines (UPRA Bovine), New Caledonia, France; ⁵ INRAE, ASSET, French West Indies, France

troduction

Ticks cause significant production losses in cattle. The parasite is a severe issue in tropical and sub-tropical areas and new regions will become at risk in the future due to climate change. Is there a genomic control and what are the metabolic processes involved in host resistance?

Iet's investigate through the example of the French New Caledonia

> Phenotypes

✤ 3 scores: load of adult ticks, load of juvenile ticks, total score ✤ 16 commercial farms with regular visits from 2014 to 2021

observations 450 400 350 20 % of observations carry 300 250 45% of total tick load 200 Of 150 100 Number 50 10-20 20-30 30-40 40-50 50-60 60-10 10-80 80-90 90-100 00-110 10-120 Classes of tick total infestation scores

Take home Tick resistance has a polygenic control. This study, despite a low number of animals, message

identified promising associated genome regions and metabolic processes which can pave the way for future investigations

Associated genome regions

- Animals genotyped with the 50K EuroGMD SNPchip
- GLM applied to correct performances by fixed effects (sex, age, herd, technician and period) and residuals averaged by animal
- GWAS performed with GCTA software

Chromosome	Position (Mb)	Associated trait(s)	Probability (max SNP)	Breed
1	155	Juveniles	10 ⁻⁶	Limousin
2	74	Juveniles	10 ⁻⁶	Charolais
2	80	Juveniles, total	10 ⁻⁶	Charolais
3	77-79	Adults	10 ⁻⁹	Limousin
9	82	Adults	10 ⁻⁷	Limousin
10	10	Adults	10 ⁻⁸	Limousin
11	31	Adults	10 ⁻⁶	Limousin
11	72-80	Adults, juveniles, total	10-11	Limousin
12	22	Adults	10 ⁻⁶	Limousin
13	72-77	Adults, total	10-11	Limousin
15	36	Adults	10 ⁻⁷	Limousin
15	43	Juveniles, total	10 ⁻⁶	Charolais
16	73	Adults	10 ⁻⁷	Limousin
19	22-26	Juveniles	10 ⁻⁶	Limousin
19	40	Adults	10 ⁻⁷	Limousin
21	31	Juveniles	10 ⁻⁷	Charolais
24	51	Adults	10 ⁻⁷	Limousin
27	14	Juveniles	10 ⁻⁶	Charolais

> Associated metabolic processes

- Genes within 1Mb of GWAS peaks
- Gene ontology with cytoscape software

Over-represented processes

(% terms per group)

- linoleic acid metabolic
- negative regulation of
- excitatory extracellular ligand-gated ion channel

→13 associated regions in Limousin and 5 in Charolais Some regions matching previous literature (other breeds) → 37 terms from 9 groups are over-represented The most over-represented process is known to play a role in skin firmness

This work is part of the AGATIS project which received funding from the Agence Rurale and from the european fund PROTEGE, as well as technical support from ADECAL technopole

INRAE GABI Domaine de Vilvert 78352 Jouy-en-Josas Cedex France Phone : + 33 (0)1 34 65 25 09 pauline.martin@inrae.fr