

Diagnostic accuracy of a digital Brix refractometer for assessing colostrum quality and failure of passive immune transfer in neonatal lambs

<u>Fabien Corbiere</u>¹, F. Rousseau², S. Gadenne¹, A. Jacquet¹, A.L. Rousset¹, J.M. Gautier³

¹ INRAE, National Veterinary School of Toulouse, France
² Clinique Vétérinaire d'Amikuze, Béhasque-Lapiste, France
³ IDELE, Toulouse, France

Introduction

- Failure of transfer of passive immunity (FTPI)
 - Major risk factor for neonatal diseases and mortality (Sawyer et al, 1977, Mc Guire 1983)
 - Influence longevity, future milk production, weight gain in cattle (Raboisson et al, 2016)
 - Still remain a major issue in many flocks, despite widely spread recommendations on colostrum management
- Need to develop simple and cost-effective diagnostic tools
 - To evidence FTPI at the lamb and flock level
 - To investigate colostrum quality as a risk factor
 - To select / discard colostrum for a colostrum bank

Introduction

- Assessment of FTPI in neonatal ruminants
 - Diagnosed when serum IgG concentration
 - < 10.0 g/L (Mc Guire, 1983)
 - < 15.0 g/L (Hunter et al., 1977; Flaiban et al., 2009; Silva et al., 2009; Turquino et al., 2011, Alves et al 2015)
 - Historical gold standard for serum IgG concentration : radial immunodiffusion (RID)
 - Numerous indirect methods already evaluated in calves...
 - Serum Total Protein (STP) (direct or indirect)
 - Brix refractometer
 - GGT
 - ... but much less in lambs

Introduction

Colostrum IgG concentration

- Cows
 - Increasingly popular in the past decade
 - Poor quality colostrum classically defined when IgG concentration < 50 g/L
 - Indirect methods (i.e. %Brix) largely used (Bielmann et al., 2010; Buczinski and Vandeweerd, 2016; Gross et al., 2017)
- Ewes
 - High variability of colostrum IgG concentration also (Gilbert 1988, Maden et al 2003, Loste et al 2008, Nunes et al 2006, Hashemi et al 2008, Kessler et al 2019)
 - Use of Brix refractometer : scarce studies (Kessler et al 2021)

Study objectives

- Assessing the diagnostic performances of a digital Brix refractometer for the assessment of
 - colostrum quality in ewes
 - failure of transfer of passive immunity (FTPI) in neonatal lambs

Material and Methods

• Colostrum samples

- 233 meat ewes (Noir du Velay and Blanche Massif Central breeds)
- Manual milking
 - immediately after lambing n = 153
 - 6 hours after lambing : n = 38
 - 12 hours after lambing : n= 42
- Frozen immediately at -20°C until analysis

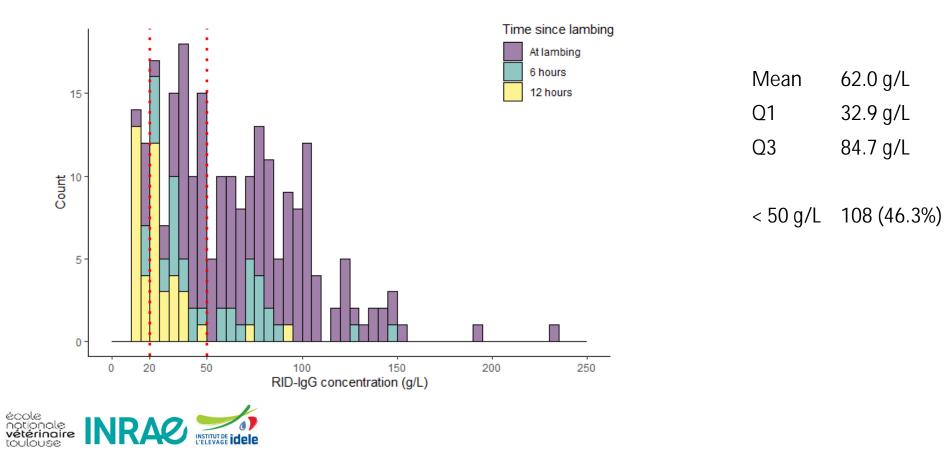
Plasma samples from neonatal lambs

- 223 2 to 4 day-old, reared under their dam
- Jugular venipuncuture in 2 vaccum tubes with lithium heparinate anticoagulant
- Centrifugated and frozen at -20° within 30 minutes until analysis

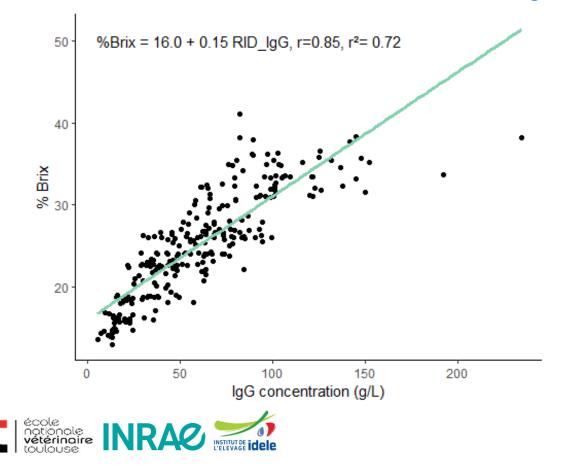
Material and Methods

- Determination of colostrum and plasma IgG concentration
 - RID with a calibration set on each plate (Sheep IgG Ring Test, IDBiotech, France)
- Determination of colostrum fat concentration
 - Gerber method
- Digital Brix refractometer
 - Hanna HI 96801 (accuracy: ±0.2% Brix)
 - Samples allowed to thaw at room temperature and homogenized
 - Triplicate measures

Material and Methods


• Statistical analysis

- Pearson r correlation between %Brix and RID-IgG
- Optimal cutoff point : ROC curves (pROC package R software, Robin et al, 2011)
 - Youden's J statistic : Se + Sp -1
 - Distance to the left-hand corner of ROC space (d²)
- FTPI: RID-IgG < 10 g/L or <15 g/L
- Colostrum quality: RID-IgG < 50 g/L



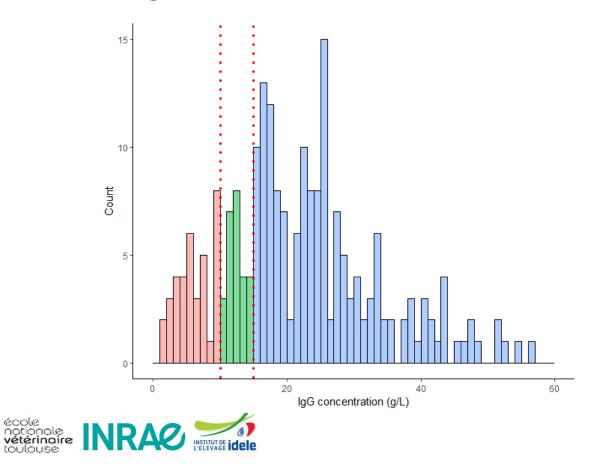
• Colostrum IgG concentration

• Colostrum : correlation between RID-IgG and %Brix

Inlfuence of IgG concentration

Each increase of 10 g/L of IGG ↓ Increase in %Brix by 1.5 ± 0.05 (p<10⁻⁶)

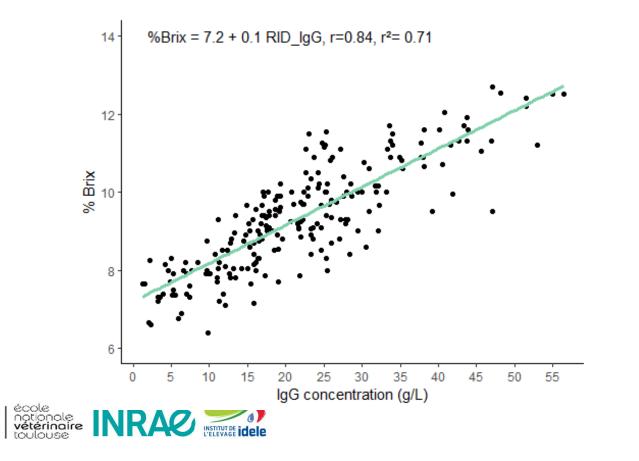
Influence of fat content


%Brix = 13.5 + 0.14 RID_IgG + 0.03 FAT

Each increase of 10 g/L of fat

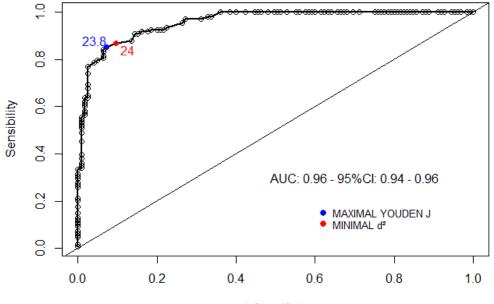
Increase in %Brix by 0.3 ± 0.05 (p<10⁻⁶)

• Plasma IgG concentration



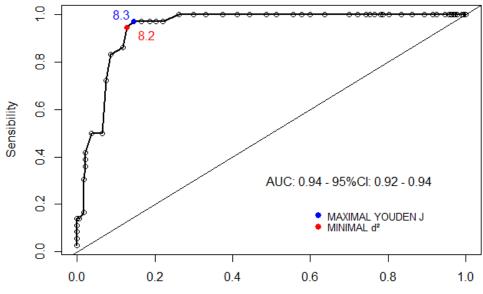
21.6 g/L
19.5 g/L
13.4 g/L
27.6 g/L

< 10 g/L 36 (16.1 %) < 15 g/L 113 (27.8%)


• Plasma : correlation between RID-IgG and %Brix

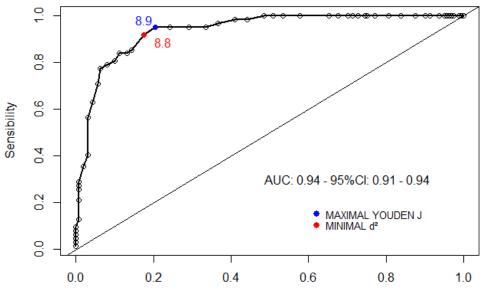
Each increase of 5 g/L of IgG ↓ Increase in %Brix by 0.5 ± 0.02 (p<10⁻¹⁶)

• ROC curves for detecting colostrum with IgG < 50 g/L


Cutoff	Sensitivity (%)	Specificity (%)	Youden J	d ²
23.8	85.2 [77.1 – 91.3]	92.8 [86.8 – 96.6]	0.78	0.15
24.0	87.0 [79.2 – 92.8]	90.4 [83.8 – 94.9]	0.77	0.16

1-Specificity

• ROC curves for plasma, FTPI = RID-IgG < 10 g/L


1-Specificity

Cutoff	Sensitivity (%)	Specificity (%)	Youden J	d²
8.3	97.2 [85.5–99.9]	85.6 [79.7 – 90.3]	0.83	0.15
8.2	94.4 [81.3 – 99.3]	87.2 [81.5–91.6]	0.81	0.14

• ROC curves for plasma, FTPI = RID-IgG < 15 g/L

1-Specificity

Cutoff	Sensitivity (%)	Specificity (%)	Youden J	d²
8.8	91.9 [82.2 – 97.3]	82.6 [75.8 – 88.1]	0.74	0.19
8.9	95.1 [86.5 – 99.0]	79.5 [72.4 – 85.4]	0.75	0.21

Discussion and conclusion

Ewe colostrum

- % Brix thresholds slightly higher (24 % Brix) than reported in cattle (21-23 %Brix)
 - May be due to a higher fat content (mean = $90.0 \pm 34.7 \text{ g/L}$)
- Our results differ from the only published study on sheep
 - Kessler et al 2021 : lower IgG concentration, higher % Brix thresholds
 - Kessler et al 2021 : ELISA IgG : poor agreement with RID (Gelsinger et al 2015; Dunn et al 2018)
- High accuracy for detecting poor / good quality colostrum
 - High interest for selecting colostrum that should / should not be kept for a colostrum bank
- Lamb plasma
 - % Brix thresholds \simeq those reported in calve (8.1-8.4 % at IgG <10 g/L) (Lombard et al, 2020)
 - High accuracy for detecting lambs with FTPI
 - High interest at the flock level to detect TPI issues

Thank you for your attention.

Any question ?

fabien.corbiere@envt.fr

