Are GPS sensors suitable to ensure the traceability of dairy cows on pastures?

<u>A. Lebreton, C. Allain, C. Charpentier, M. D'Introno, A. Fischer,</u> <u>W. Lonis, E. Nicolas, A. Philibert</u> 73rd Annual Meeting of EAAP in Porto. 07/09/2022

Horizon 2020 European Union Funding for Research & Innovation

Consumers' expectations regarding animal welfare

Several specifications regarding the label but mostly :

- at least 6 h/d grazing
- at least 120 d/year grazing
- grazing is more defined as « outdoor access » than intake of grass

Objective of the project

How can we **automatise** the compliance checking of "grazing milk" specifications with the use of embedded GPS sensors ?

Especially the time cows spend outside (TOut) ?

M&M: the global concept

M&M : Animals and sensors

Time spent outdoor monitored on 2 experimental farms (3 datasets) ...

Trial Name	A-2019	B-2019	B-2020
Farm Name	А	В	В
Trial pariod (dmy)	03/04/2019 -	19/07/2019 -	22/07/2020 -
That period (uniy)	05/05/2019	31/08/2019	16/09/2020
Number of cows in the herd	70	85	85
Number of cows equipped with	8	9	9
GPS sensor			
Trial duration (days)	37	36	48
Access to pastures	Mostly free	Limited	Limited

... Thanks to digitanimal GNSS sensor.

1 geotracking position every 11 min

Reference Time spent outdoor recorded with RFID identification at the gate (farm A) or manually (farm B)

M&M : Algorithm A (a density-based algorithm)

See Lebreton et al. (2022) for more details on the methodology

M&M : Algorithm B

TOut = nbr of pastures locations * interval between 2 GNSS data (11min)

		Daily average TOut estimated by algorithm B			
Farm	Î.				
+	Ą	RMSE = 17 min/d (CV = 2.5%)			
0	B 2019	$RMSE = 40 \min/d (CV = 3.5\%)$			
Δ	B 2020	RMSE = 50 min/d (CV = 6.0%)			

Algorithm A results available at Lebreton *et al.* (2022)

Algorithm B provide similar results than Algorithm A

Low error of estimation (CV: 2,5-6%) ; Higher error for farm B due to grasslands system structure

Discussions

- GSM or IOT networks coverage is not available everywhere
- Algorithm A :
 - Needs a difference of positions density between barn and paddocks
 - Needs GNSS data in the barn:
 - not all herds are systematically housed in a barn in summer time
 - GNSS sensors work badly in some barns
 - ➔ Not suitable in every systems
 - ➔ Will work poorly if too much missing data due to poor connectivity
- Algortihm B:
 - Needs Farmer's input about paddocks map

Hour of the day

Date

Conclusion / perspective

- Algorithms provide results compatible for traceability needs
- Both algorithms provide similar results with low errors (CV < 6%)
- But :
 - Algorithm A needs high quality data, proper parameters to be adjusted for different farm systems, but no paddocks' map
 - Perspective for other applications with no knowledge of the area of interest
 - Algorithm B needs a map of the farm systems but is very reproducible
 - Has been deployed with GNSS on 22 commercial farms (Nicolas et al., 2022)
 - Could be used for traceability solutions (API already implemented)
- Other outputs from GNSS sensors and algorithms can be provided (weekly positions visualisations, grazing calendar) see **Nicolas et al. (2022)**

Thank you for your attention

This project was funded by the European Project H2020 Cattlechain 4.0 under grant agreement no. 853864.

References :

Hahsler, M., Piekenbrock, M. and Doran, D. (2019) *Dbscan: Fast density-based clustering with R.* Journal of Statistical Software 91, 1–30. Lebreton A., Allain C., Charpentier C., D'Introno M., Fischer A., Lonis W., Nicolas E., Philibert A. (2022). *Are GPS sensors and density-based classification suitable to ensure the traceability of dairy cows on pastures? Part I: Development and validation on experimental farms.* In: Proc. ECPLF 2022, Vienna, 2022.

Nicolas, E., D'introno, M., Fischer, A., Lebreton, A., Philibert, A., and Allain C. (2022). Are GPS sensors and density-based classification suitable to ensure the traceability of dairy cows on pastures? Part II: on-farm deployment. In: Proc. ECPLF 2022, Vienna, 2022.

At the daily scale :		Daily average TOut estimated by algorithm A	Daily average TOut estimated by algorithm B
-	Farm A (N=37 d)	RMSE = 17 min/d (CV = 2.5%)	RMSE = 19 min/d (CV = 2.8%)
	Farm B 2019 (N=34 d)	$RMSE = 40 \min/d (CV = 3.5\%)$	RMSE = 39 min/d (CV = 3.4%)
	Farm B 2020 (N=48 d)	RMSE = 50 min/d (CV = 6.0%)	RMSE = 46 min/d (CV = 5.5%)

		Average Reference TOut	Average TOut estimated by algorithm A	Average TOut estimated by algorithm B
At the period scale :	Farm A	676 ± 221 min/d	675 ± 217 min/d	665 ± 220 min/d
	Farm B 2019	1132 ± 31 min/d	1156 ± 58 min/d	1153 ± 62 min/d
	Farm B 2020	$835 \pm 377 \text{ min}$ /d	829 ± 349 min/d	825 ± 352 min/d

Estimation error is below 1 hour (CV: 2,5-6%) at the daily scale and estimation errors balance out over the time at the period scale.

M&M : Algorithm B

any polygons

the barn effect