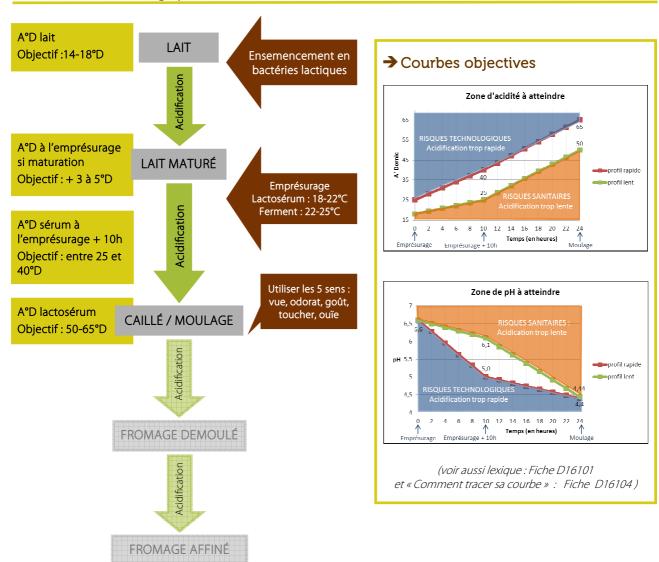
Comment acidifier son lait de chèvre pour fabriquer des fromages lactiques Les étapes, les points clés



CONDUITE DE L'ACIDIFICATION EN CAILLÉ LACTIQUE

SCHEMA TECHNOLOGIQUE D'UNE PÂTE LACTIQUE

• Itinéraire technologique

• Pourquoi suivre l'évolution de la courbe d'acidification ?

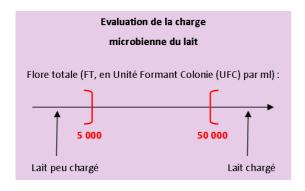
Il est important de faire des mesures régulièrement sur ses fabrications lactiques pour :

- conserver en référence les paramètres des fabrications qui se déroulent bien,
- **suivre** votre campagne fromagère et **anticiper**, **appréhender** les conséquences des changements de saison ou d'alimentation et les évolutions au cours du cycle de production,
- détecter les dérives : il vous sera plus facile de réagir rapidement et d'éviter une détérioration de la situation,
- demander un conseil, échanger plus facilement avec votre interlocuteur (technicien, producteur voisin).

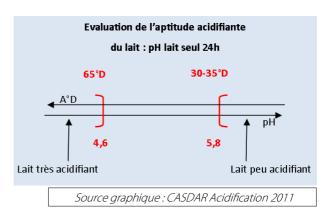
UTILISATION DES FERMENTS LACTIQUES EN PÂTE LACTIQUE

Pourquoi ?

La fabrication d'un fromage passe par une étape de fermentation lactique, d'où la nécessité d'ajouter des bactéries lactiques dans le lait.


Plusieurs options, utilisations (cf lexique: Fiche D16101):

- du lactosérum (petit lait) contenant des bactéries lactiques et des flores de surface (levures, moisissures et Geotrichum, Penicillium).
- d'une fermentation fermière qui est issue du lait trait à la main de chèvres sélectionnées, fermenté à 22°C pendant 48h contenant des bactéries lactiques indigènes mais souvent pauvre en flores de surface (apport recommandé à l'utilisation),
- d'un ferment du commerce contenant uniquement des bactéries lactiques sélectionnées, ce qui nécessite un apport de flore de surface complémentaire (si besoin, levures / Geotrichum, moisissures).


Quelle préparation pour mon lait?

Dans quelle situation, dois-je mettre en place une préparation du lait ?

Cette pratique est à raisonner en fonction de la qualité du lait. Avant tout, il faut prendre en compte la qualité initiale du lait : si le lait est peu chargé en germes, voire paucimicrobien (< 5000 germes/ml), l'ensemencement en bactéries lactiques et la préparation du lait est nécessaire. Procéder à une analyse en laboratoire de votre lait de traite pour connaître la flore initiale totale.

Lait peu chargé

Si le lait est chargé ou très chargé en flore (> 50 000 germes/ml), il est difficile de maîtriser l'acidification et le développement de bons ferments. On peut tester son pouvoir d'acidification en évaluant sa prise d'acidité en 24h à 22° C.

Décision à prendre en fonction des résultats de flore et comportement acidifiant

Lait peu acidifiant

Lait très

acidifiant

 Lait peu acidifiant et peu chargé Préparation du lait (T°C, dose) en fonction de l'objectif type, revoir les conditions d'élevage à moyen ou long terme.

· Lait peu acidifiant et chargé

Ne pas chercher à préparer les laits (notamment prématuration) : risque de dérive et acidification trop rapide = irrégularité des produits.

Lait chargé

 Lait très acidifiant et très chargé Ralentir la courbe d'acidification (pas de préparation et température faible de

• Les différents types de ferments existants

- le lactosérum, lactofermentation fermière,
- les ferments directs du commerce,
- les ferments commerciaux à préparer ou souche mère , ou grand levain.

→ Ferments utilisables en fonction du schéma technologique

- Lactosérum ou grand levain ou lactofermentation (cf lexique: Fiche D16101): utilisation en fabrication directe après la traite ou fabrication avec report de traite ou prématuration (dans tous types de fabrication).
- Ferments directs: utilisation uniquement en cas de fabrication après chaque traite ou report de traite. Ne pas employer en cas de prématuration, car ces ferments sont peu actifs à basse température et incapables d'acidifier s'ils sont non réhydratés.

• Règles à respecter

→ Dose et température : l'objectif de l'acidification du sérum en 24h, au moulage est de 50 à 65°D en lait de chèvre et vache et de 65 à 80°D en lait de brebis.

Le lactosérum

- → Il doit être issu d'un bon caillé (sérum surnageant), de couleur claire, translucide, pas de trous, odeur normale et acidulée.
- → Son acidité doit se situer entre 50 et 65°D (possibilité de remplacer le sérum par du caillé ou mélange des deux).

 NB : si le caillé est utilisé : ce dernier contient moins de levures mais est plus concentré en bactéries lactiques.
- → Il peut être **conservé au frais** à 4°C plusieurs jours (3 jours max) ou avoir été congelé avec un cryoprotecteur (lait de l'exploitation bouilli ou UHT) au maximum 10 semaines à -18°C.

Les ferments du commerce

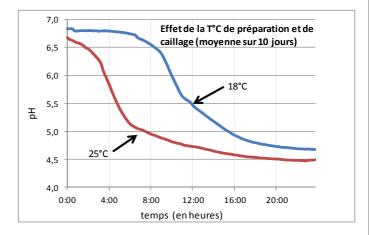
→ Il est impératif de **gérer en même temps la flore de surface**. Il faut être très précis, rigoureux et constant au niveau de la température pour la préparation et l'utilisation, car ces bactéries sont exigeantes et moins adaptables que le lactosérum.

1) Les ferments directs

- → Choisir un **conditionnement adapté** au volume de lait traité sinon le dosage est aléatoire.
- → Ils sont introduits directement dans la cuve. Avant l'ensemencement, la réhydratation est recommandée pour une meilleure homogénéité (exemple : 1h dans du lait à température d'emprésurage ou mettre dans le tank à lait en début de la traite).
- → Ils doivent être **répartis régulièrement** dans toutes les bassines de la fabrication.
- → Le sérum issu de ces fabrications ne sera pas réutilisable (pas de repiquage envisageable).
- → Ils doivent être utilisés impérativement à des températures **au moins égales à 22°C** sans variation pendant la phase de caillage.
- → La conservation s'effectue **en chambre froide ou au congélateur** selon la recommandation des fournisseurs et jusqu'à la DLC.
- → Changer régulièrement de souches (rotation) pour éviter les bactériophages et ne pas mélanger les ferments entre eux sinon on ne sait plus lequel travaille.
- 2) Les ferments indirects, souche mère ou à préparer : plan de repiquage (cf Lexique : Fiche D16101)
- → Ils nécessitent une préparation de 24h avant utilisation : culture de bactéries lactiques dans un milieu (lait ou milieu spécifique) ou pied de cuve, utilisé de suite ou conservé au froid pendant 2-3 jours.
- → Ils doivent être utilisés impérativement à des températures **au moins égales à 22°C** sans variation pendant la phase de caillage
- → La conservation du ferment lyophilisé brut s'effectue en chambre froide ou au congélateur selon la recommandation des fournisseurs et jusqu'à la DLC.
- → Le mélange préparé (lait + 50ml de souche mère préparée) peut être congelé pendant quelques mois sans incubation et ressorti avec une incubation de 24h avant utilisation.

• Leviers d'action sur la courbe d'acidification : température, dose d'ensemencement, temps, type de préparation du lait

Cinétiques d'acidification avec des doses d'ensemencement différentes (ferment direct) sur du lait de chèvre pasteurisé (Dalmas, 2006)


Latence

5,5

4,5

1er levier : action sur la dose d'ensemencement : plus la dose est importante, plus le temps de latence est court.

2^{ème} levier : action sur la température : plus la température de caillage est **élevée**, plus la pente de la courbe est **inclinée**.

NB: Si la préparation du lait est trop importante (mais A°D du lait < 35°D), on peut emprésurer à température plus basse, mais on ne rattrapera pas toute la dérive.

Attention à ne pas avoir une température de prématuration trop haute : objectif< 15°C.

CONCLUSION

Plusieurs itinéraires sont à votre disposition suivant les schémas technologiques souhaités. Il est impératif d'être rigoureux sur les températures, les doses et de maîtriser les contaminations éventuelles du lait.

Important : un écart de 2°C en dessous de l'objectif ou du repère entraînera des variations finales d'acidité importantes et un retard ou désorganisation dans le travail.

La maîtrise de l'acidification passe par l'utilisation régulière d'outils : thermomètre, acidimètre Dornic ou pH-mètre ou bandelette papier pH (positionner vos valeurs dans le tunnel d'acidification), calculette (pour contrôler la dose d'ensemencement à apporter) et flacon doseur.

PÔLE D'EXPÉRIMENTATION ET DE PROGRÈS CAPRIN

SIEGE: CHAMBRE D'AGRICULTURE, 4 AVENUE DE L'EUROPE UNIE, BP 114, 07001 PRIVAS CEDEX

TEL: 04 75 20 28 00

SITE EXPERIMENTAL: DOMAINE DU PRADEL, 07170 MIRABEL

TEL: 04 75 36 74 37 www.pep.chambagri.fr

Fiche réalisée dans le cadre du groupe technique régional « Fromagerie », animé par Sylvie Morge (PEP caprin) à partir des résultats du CASDAR « acidification ».

2016 D16102