

X. Vergé, M.-H. Rozé, Y. Fouad, P. Robin, M. Fougère and E. Lorinquer

- Focusing on ammonia (NH₃) emissions
- Ammonia has health¹ and environmental² impacts
- In France agriculture is the main contributor

Contribution to the French national emissions (Citepa 2016)4 Agricultural sector Cattle sector Cattle building 42 % **26** % Ammonia NH₃ 98 % +/-12% 25 - 50%18 - 25%30 - 40% NH_3 (Cattle) 26% 34% 15% 25% Building **Spreading** Storage **Pasture** Manure **Pasture Animal buildings** Spreading storages

^{1:} Donham et al, 2002;

²: Ademe and MEDDTL, 2012

The "EMISOLBV" project

Developed for setting up a field method to:

- being able to verify the emission reductions of equipment or practices
- assess the contribution of hotspots in cattle buildings
- Use of ventilated semi-static chambers for ammonia emission assessments
- II. Use of **traceable solutions** $(Na_2CO_3 \text{ and } (NH_4)_2SO_4 \text{ in aqueous solution})$

Thermo-hygrometer

Filter (air inlet)

III. Use of the **Near Infra-Red Spectroscopy (NIRS)** for soiled soil characterisation and spatial extrapolation

• Use of traceable solutions $(Na_2CO_3 \text{ and } (NH_4)_2SO_4 \text{ in aqueous solution})$

ISSUE

Chamber measurements must deal with potential variabilities in pumping, ventilation, adsorption, etc.

Effect on emission calculations

OBJECTIVES

- Verify the relationship between the observed concentrations and the calculated emissions from on-site measurements
- the **reliability** of these measurements

CONSTRAINT

They must be comparable to the slurry characteristics:

- observed NH_4^+ in slurry in the range of 0,043 to 0,15 mol/l
- observed pH between 7 and 9.3

Solution	[NH ₄ ⁺] mol/L	рН
Solution 1	0,125	7,49
Solution 2	0,125	7,88
Solution 3	0,124	8,12
Solution 4	0,124	8,45
Solution 5	0,123	8,73
Solution 6	0,120	9,05
Solution 7	0,114	9,50
Solution 8	0,105	9,85
Solution 9	0,102	10,35
Solution 10	0,148	8,43
Solution 11	0,075	8,35
Solution 12	0,037	8,56
Solution 13	0,037	7,15

Traceable solutions - Measurements

3 aqueous solutions kept for on-farm measurements

Adsorption effect

On-site measurements

Measured NH₃ concentrations

- Chamber variability
- ➤ Need of replicates
- ➤ Increase in concentrations and then plateau
- > First measurements to be left

Measured concentrations,

Air temperature monitored in the chamber

Corrections based on the lab and field measurements

Calculation of the NH₃ emissions from each chamber

Use of the Near Infra Red Spectroscopy (NIRS)

NIRS is known to help characterizing the animal manure

Simultaneous **spectra** and **pictures** have been collected in the walking areas

Spatializing the heterogeneity of manure deposits

Secondary axis - 8,48%

All spectra have been analyzed (PCA¹) and classified (HCA²)

Heavily soiled areas

1: Principal Component Analysis

²: Hierarchal Cluster Analysis

Use of NIRS for spatial extrapolation at the whole building

Class	Picture	Characteristics	% emissions
0		Mainly dry and clean areas	0%
1		Between classes 0 an 2	50%
2		Areas generally wet with urine and feces	100%

Use of NIRS for spatial extrapolation at the whole building

NH₃ emissions at the building scale

- 1- NIRS for estimating manure heterogeneity
- 2- Classification (0, 1 or 2) with measured areas
- 3- Chamber set over the class 2
- 4- Emissions calculations over the chamber area
- 5- Extrapolation for the whole building

Future Developments

3-

Thank you

Aknowledgment

The authors want to thank the Food and Agriculture French Department for supporting this project throught the Rural and Agricultural Development (CASDAR) fundings.

References

- 1. Donham, K.J, Cumro, D., Reynolds, S. —Synergistic effects of dust and ammonia on the occupational health effects of poultry production workers||. J Agromedicine. 2002; 8(2): 57-76.
- 2. Ademe et MEDDTL. 2012. Les émissions agricoles de particules dans l'air. Etats des lieux et leviers d'action. Editions Ademe, 36 p.
- 3. Ademe, 2020. Guide des bonnes pratiques agricoles pour l'amélioration de la qualité de l'air. Editions Ademe, 43 p.
- 4. CITEPA, 2016. CITEPA, édition mars 2016. Inventaire des émissions de polluants atmosphériques en France métropolitaine, format CEE-NU

