

La composition fine du lait de chèvre en acides gras : effets des pratiques d'élevage et de la génétique

Jean LEGARTO¹, Isabelle PALHIERE²

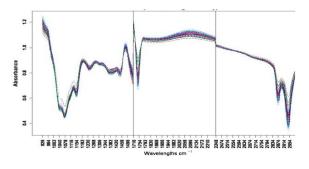
¹ Institut de l'Elevage, Castanet-Tolosan

² INRA SAGA, Castanet-Tolosan

www.idele.fr

4èmes Journées Techniques Caprines - 3 et 4 avril 2013

Plan de l'exposé

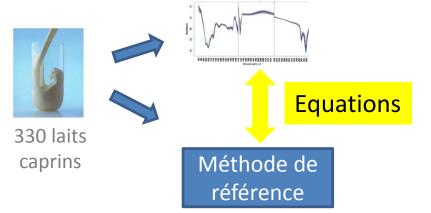

- Le programme PhénoFinlait
- Effet de la génétique sur la composition du lait en acides gras
- Effet des pratiques d'alimentation des troupeaux sur la composition du lait en acides gras

PhénoFinlait, c'est quoi?

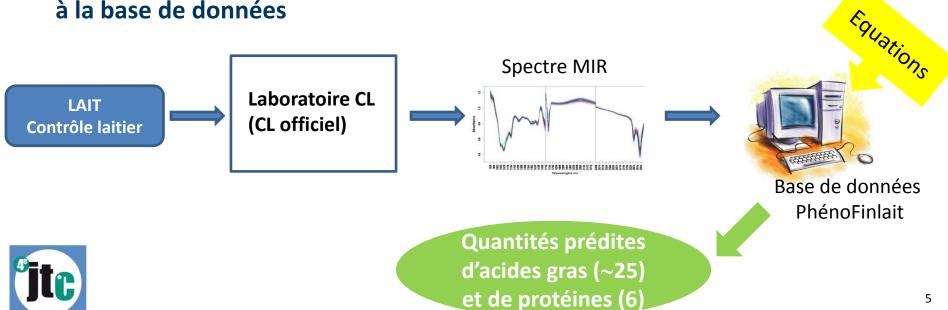
- Un programme de recherche-développement
- A l'initiative de tous les acteurs de la filière laitière (bovins, ovins, caprins)
- Objectif: Phénotypage fin du lait → Phéno-Fin-lait
 Connaître et maîtriser la composition fine du lait en acides gras et protéines
- Fondé sur l'utilisation des spectres Moyen Infra Rouge
 - Enregistrement quotidien par tous les laboratoires d'analyses du lait
 - Le spectre MIR = reflet de la composition chimique d'un produit

Les objectifs du programme

- Méthodes de phénotypage fin en routine
- Collecte et analyse à grande échelle : base de données
 - Spectres MIR → composition fine AG et protéines
 - Enquêtes en élevage (alimentation)
 - Echantillons de sang (ADN pour génotypage) et lait


En caprins: 209 élevages dans 9 départements, 290 000 spectres,

70 000 femelles dont 4 400 avec sang, 895 enquêtes, une lactobanque


- Analyse des facteurs de variation de la composition fine
 - Génétique: jeter les bases d'une sélection génomique (détection de SNP marqueurs de QTL, relation avec des gènes d'intérêts...)
 - Environnementaux : alimentation, autres facteurs d'élevage
- Enrichir le conseil en élevage

Comment estimer la composition fine du lait à partir de spectres MIR ?

 Etape 1 : établir des équations d'estimation (modèle statistique)

 Etape 2 : appliquer les équations à la base de données

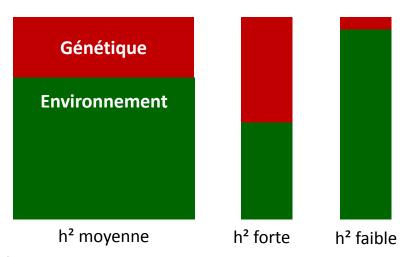
La composition fine du lait de chèvre en acides gras (exprimée en % des acides gras totaux)

Acide gras	Précision équation caprine (R²)*	alpine + saanen	lacaune	montbéliarde
Acide gras saturés	1	73,4%	74,2%	67,1%
Acides gras mono-insaturés	0,97	22,0%	19,3%	28,7%
Acides gras poly-insaturés	0,93	4,1%	4,4%	3,9%
C16:0 acide palmitique	0,95	27,2%	24,9%	28,1%
C18:1 cis 9 acide oléique	0,96	18,3%	12,8%	21,5%

^{*} Equations de novembre 2012

La précision de l'estimation des protéines n'est pas satisfaisante (R²=0,30-0,40). Elle est en cours d'amélioration.

Effet de la génétique sur la composition du lait en acides gras



Héritabilité

Définition

h² représente la part génétique (variabilité animale) de la variation totale (phénotypique) d'un caractère

→ Indicateur de la « facilité » de sélection

Données sur les acides gras (exprimés en % MG)

- chèvres L1: 7 359 alpine et 6 337 saanen (3,5 contrôles/femelle)
- 9 AG et 11 sommes ou ratio

	alpine	saanen
AGS	0,20	0,21
AGMI	0,30	0,25
AGPI	0,30	0,24

lacaune	montbéliarde
0,28	0,24
0,25	0,22
0,25	0,27

Corrélations génétiques - race alpine

Deux caractères différents selon l'expression

Exprimés en g/100g de MG

	PL	ТВ	TP
AGS	0	+	0
AGI	0	0	0

	AGI
AGS	

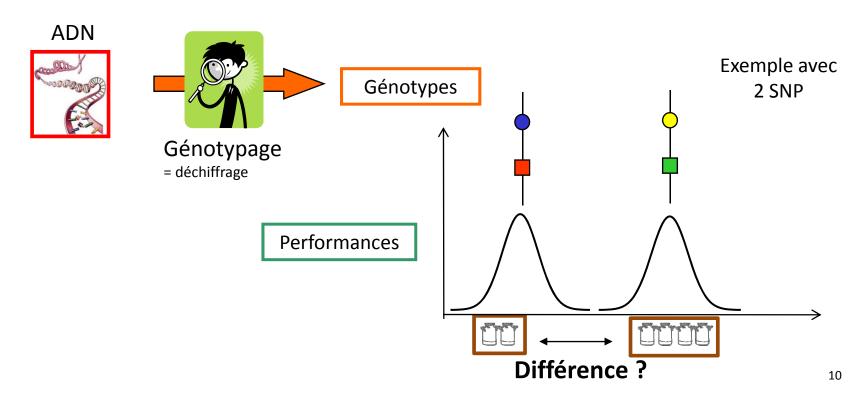
Relation mathématique AGS+ AGI = 100 73,8 g AGS 23,1g AGI

Exprimés en g/100g de lait

	PL	ТВ	TP
AGS		++	++
AGI		+++	++

	AGI
AGS	+++

2,62 g AGS 0,82g AGI



Détection de QTL

Définition

QTL = Quantitative Trait Locus = région du génome ayant un effet significatif sur le caractère étudié

Principe : analyse des relations entre caractères et marqueurs génétiques

Détection de QTL

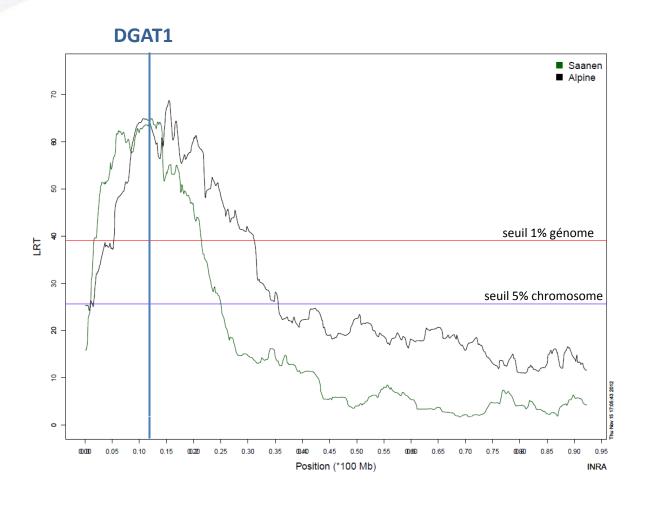
Données

- 20 familles de boucs d'IA avec chacun 100 filles L1-L2
- Génotypes : 1 309 alpine et 937 saanen

Puce 54K Illumina

Performances : acides gras (20), caractères laitiers (5), CCS et morphologie mamelle (11)

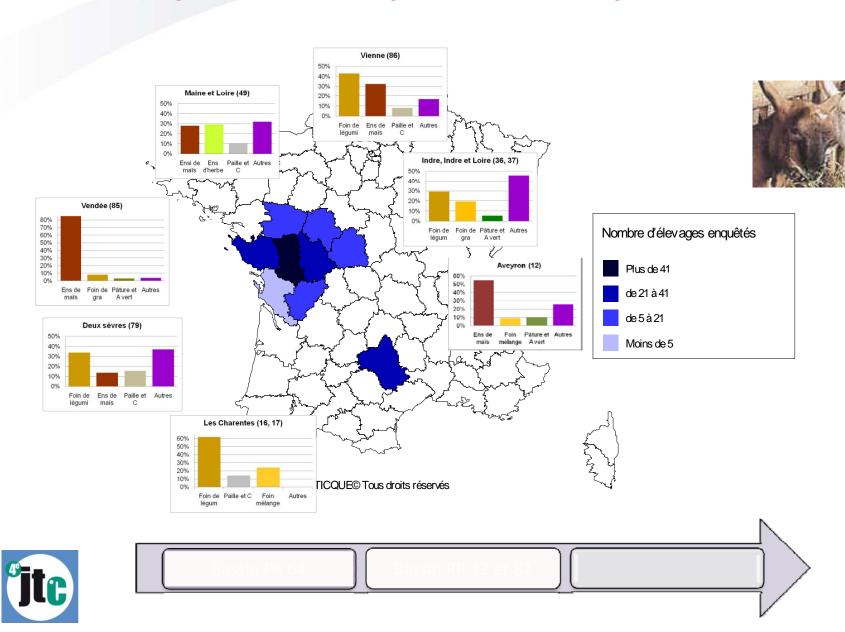
■ De nombreux QTL détectés (seuil 5% au niveau chromosome, analyse de liaison)


- 27 sur les caractères laitiers
- 2 sur les CCS
- 47 sur les acides gras (exprimés en %MG)
- 39 sur la morphologie mammaire

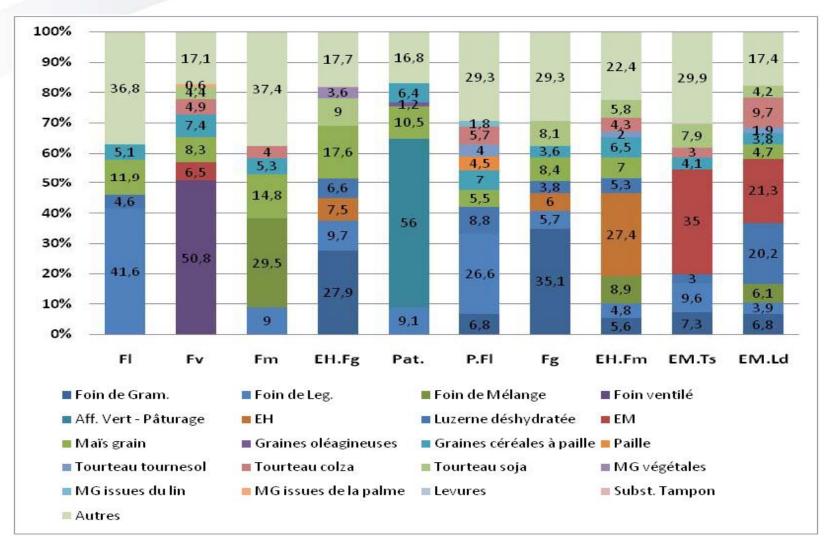
Deux zones qui ressortent particulièrement

- Région des caséines (CHI 6)
- Région de DGAT1 (CHI 14)

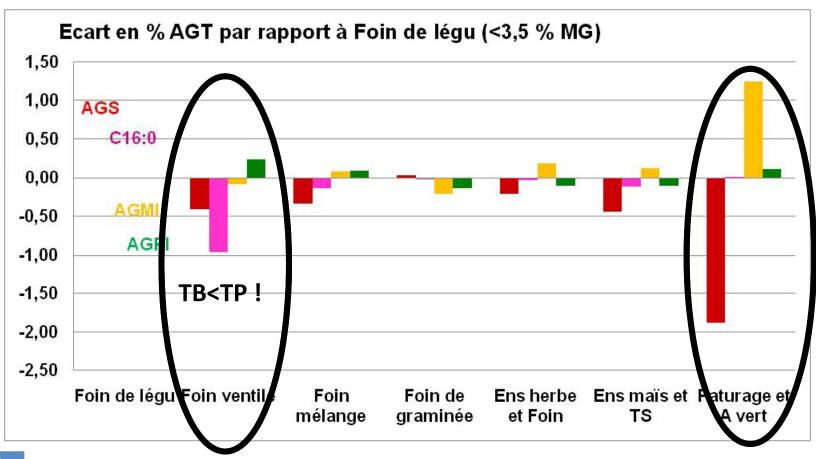
Exemple de détection : pour le TB sur le chromosome 14



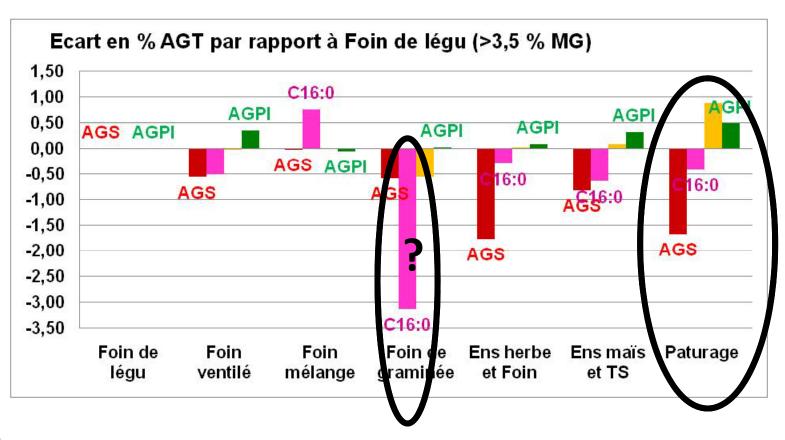
Beaucoup d'acides gras concernés également (~10)


Effets des facteurs d'élevage sur la composition du lait en acides gras

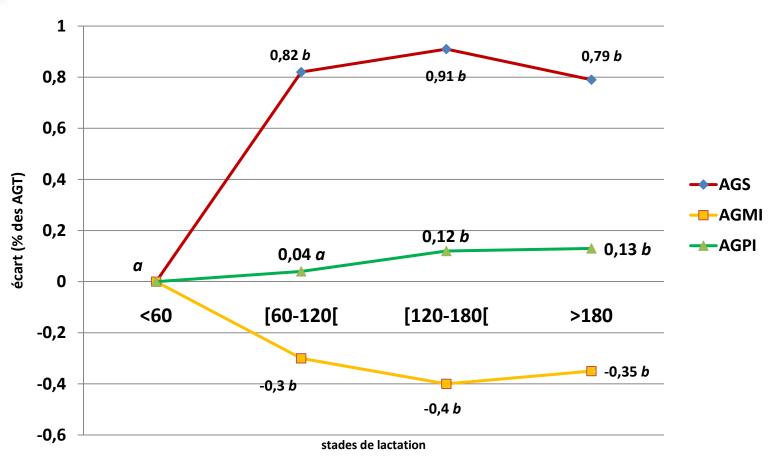
895 enquêtes au départ sur 9 départements



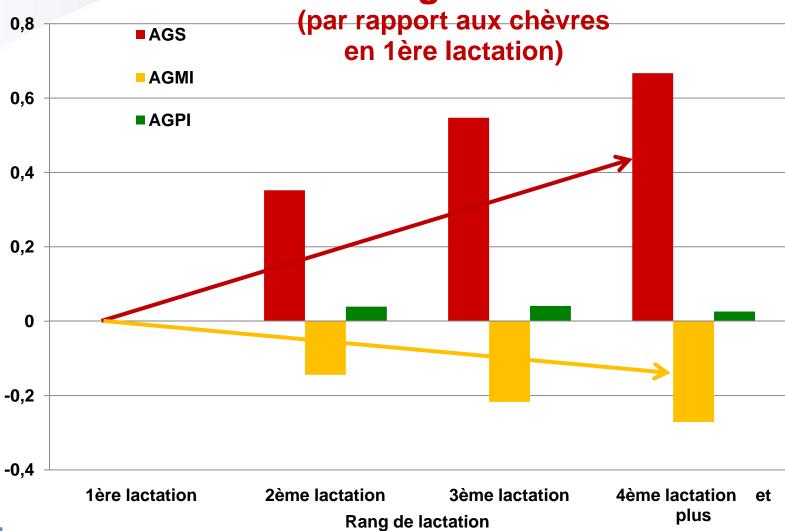
Diversité de l'alimentation caprine



Les effets systèmes d'alimentation (<3,5 % MG) sur les principaux acides gras en caprin par rapport à « Foin de légumineuse »



Les effets systèmes d'alimentation (>3,5 % MG) sur les principaux acides gras en caprin par rapport à « Foin de légumineuse »



Variations de la composition en AG du lait selon le stade de lactation

Effet du nombre de lactation sur les acides gras du lait

Effets sur la composition en AG

Les grandes tendances des effets des systèmes d'alimentation en lait de chèvre sur les AG du lait (% AGT)

- Avec de faibles teneurs en gras dans la ration (<3,5 %ms):
 - -- l'herbe verte et le foin ventilé augmentent la part des AGPI et diminuent celle des AGS
 - -- l'ensilage de maïs a peu d'influence...
- Avec des teneurs en gras plus élevées dans la ration (>3,5 %ms)
 - -- il y a moins de différentiation par les systèmes d'alimentation « herbe verte » ou « foin ventilé »

21

Conclusion

 Les conduites alimentaires : des effets connus mais relativisés

Le levier alimentaire existe pour améliorer le profil d'acides gras du lait puis du fromage

- -- l'herbe verte et le foin ventilé augmentent la part des AGPI et diminuent celle des AGS
- -- l'ensilage de maïs a peu d'influence...
- Les profils d'acides gras mesurés en routine par MIR deviendront des indicateurs du fonctionnement du rumen
- L'analyse des spectres MIR des laits donneront peut être aussi d'autres indications métaboliques...à suivre

Conclusion

Génétique

- Acides gras
 - Existence d'une variabilité génétique
 - Peu d'impact de l'objectif de sélection actuel
 - Difficulté de la gestion de la relation favorable entre AGS et TB
 - Quel poids économique ?
- Protéines :
 - Tout est à faire en caprins, équations en cours de développement
 - Perspectives d'application plus nombreuses que pour les acides gras
- Identification de régions du génome :
 - De nombreux QTL détectés
 - Deux régions détectées avec gènes majeurs connus
 - Des régions à approfondir pour préciser plus finement la position

