

PhenoFinLait (LactoScan)

phenofinlait@inst-elevage.asso.fr

A Line

French national program for high scale phenotyping and genotyping to detect QTL linked with fine composition of ruminant milk

1. Context and motivations

- 2. Background and objectives
- 3. Organization and 1st works
- 4. Financial support
- 5. Conclusions

International context

• Consumers are aware of the food impact on their health

1 4.

...

- Better knowledge on genomes and milk synthesis and secretion by mammary gland
- Appearance and use of bulls from genomic selection (New Zealand, USA, France)

French context

- In Europe: end of quota by 2015 \rightarrow need to find new added value for milk

15 1.

...

- June 2009: 1st publication of genomic bulls on quantitative and functional criteria
- Consumers want milk and milk products naturally good for their health

- Numerous articles on impact of milk components on human health (FA, proteins, carbohydrates...)
- Increase knowledge on milk synthesis and secretion and on genes participating to these mechanisms
- New technologies (high density), everything is going fast

Phénofinlait: why ?

• For milk producers: need to develop tools (management of herds and feeding strategies) for a better control of milk components and for a production of naturally healthy milk and milk products

15 1.

- For dairy industries: need to bring to consumers milk and milk products naturally healthy
- For breeding companies: need to produce genomic evaluation on fine milk composition

- 1. Context and motivations
- 2. Background and objectives
- 3. Organization and 1st works
- 4. Financial support
- 5. Conclusions

Phénofinlait: background

- Advanced technology: advance in discoveries of fine milk components with interest for farmers, industries and consumers
 - Proteins:

A D

-

- SAA3 as a precocious tracer for mastitis (Eckersall *et al.*, 2001),
- B β-lg variant increases strength of gels (Meza-Nieto et al., 2007),
- A2 β-casein variant decreases incidence of cardiovascular disease and type 1 diabetes (Bell *et al.*, 2006)

Phénofinlait: background

- Advanced technology: advance in discoveries of fine milk components with interest for farmers, industries and consumers
 - Lipids:

A D.

-

- trans 10 C18:1/trans 11 C18:1 as a marker of rumen acidosis (when it increases) (Enjalbert *et al.*, 2008),
- CLA-enriched milk decreases butter and cheese firmness (Jones *et al.*, 2005),
- myristic acid (C14:0) participates to protein acylation and cell membrane properties (Rioux *et al.*, 2002)

Phénofinlait: background

 Advanced technology: advance in discoveries of fine milk components with interest for farmers, industries and consumers

– Carbohydrates:

 Sialic Acid participates to infant cognitive development, learning and memory (Wang, 2009)

- Minerals:

A D

-

• calcium increases bones density (Haug et al., 2007)

Phénofinlait: background

 Advanced knowledge in factors impacting fine milk composition

A D.

-

- **Genetic:** bovine DGAT1 polymorphism and milk FA composition (Schennink *et al.*, 2007);

goat CSN1S1 polymorphism and milk protein content (Grosclaude *et al.*, 1994)

 Feeding: in comparison to maize silage diet, pasture, grass forages or some supplemented diets increase milk mono- and poly-unsaturated FA content

Phénofinlait : MIR spectra and milk FA profile prediction

A line

11

Can also help to estimate FA, lactoferrin and some minerals (Ca, P) content

nombre d'onde (cm -1)

(Soyeurt *et al.*, 2006 ; Soyeurt *et al.*, 2007 ; Soyeurt *et al.*, 2009), monotinitait.fr

Phénofinlait: objectives

- Develop and control methods to analyze fine milk composition
- High scale analysis of milk composition and development of a huge data base
 - Fine composition (FA and proteins)

A D.

11

- Feeding strategies and management of herd
- Biological samples (blood for genotyping and milk)
- Understand how genetic and feeding strategies impact fine milk composition
- Create tools (genetics + feeding strategies) to adapt variation of consumers demand and health

- 1. Context and motivations
- 2. Background and objectives

3. Organization and 1st works

- 4. Financial support
- 5. Conclusions

A French dairy industry R&D program on thin milk composition Phénofinlait: How ? Partners from every rings of dairy industry

CNIEL (Dairy industries and farmers)

France Génétique Elevage : *(France Livestock Genetics)*

UNCEIA, ANIO and CapGène (about 10 breeding companies)

FCL and CNBL (Milk recording organizations)

Actilait and regional laboratories

INRA

A lin

-

(French National Institute for Agricultural Research) (4 labo, 4 exp. units, 2 dép.)

Institut de l'Elevage

(French Livestock Institute) (4 teams, 3 dép.)

And about 1500 farms !

A French dairy industry R&D program on thin milk composition PhénoFinlait Phénofinlait: How ? Organizing committee

Phénofinlait consortium: Actilait (1), CNIEL (2), FCL (3), CNBL-ANIO (4), Institut de l'Elevage (5), INRA (6), Lilano (7) and UNCEIA (8)

15 11

...

- Steering committee: D. Boichard (6), M. Brochard (5) and K. Duhem (2)
- Scientific committee: F. Barillet (6), P. Brunschwig (5), S. Fritz (8), P. Martin (6), S. Mattalia (5), J.L. Peyraud (6)

Phénofinlait: How ? 3 steps, 6 work packages

- Step 1: test, development and validation of methods for fine milk composition analysis
 - WP1: fix terms to use routinely MIR spectra
 - WP2: development of phenotyping method for FA
 - WP3: development of phenotyping method for proteins
- Step 2: collect of phenotypes, blood (DNA) and milk samples (WP4)
- Step 3: valorization and results

IN U.

- WP5 : genotyping and analysis of genetic and environmental factors
- WP6 : valorization and enhance of herd management advices

Phénofinlait: 1st works WP2: routine phenotyping of FA composition

Based on MIR spectra

A D

- Development of predictive equations with PLS regressions method (PLS1 or PLS2)
- Good prediction for 17 FA and some ratios (cross-validation coefficient of determination (R2CV) >80%)
- Correct prediction for 15 FA (70<R2CV<80%)
- Better results for ewe and cow milks than goat milk

AG (g/100 mL)	Mean	Sd	R2CV	RPD
Fat content	3,98	0,568	1,00	25,96
C4:0	0,15	0,02	0,87	2,58
C6:0	0,09	0,02	0,94	3,94
C8:0	0,05	0,01	0,96	4,91
C10:0	0,13	0,03	0,93	3,61
C12:0	0,15	0,05	0,93	3,52
C13:0	0,01	0,00	0,76	1,97
C14:0	0,46	0,09	0,81	2,20
C16:0	1,31	0,29	0,90	3,03
С17:1 10с	0,01	0,00	0,87	3,14
С18:1 9с	0,71	0,22	0,95	4,67
C18:1 12c	0,01	0,00	0,78	2,02
Total 18:1cis	0,74	0,23	0,95	4,70
Total 18:1	0,82	0,24	0,96	5,23
C18:3n-3	0,02	0,01	0,80	2,13
Total C18:3	0,02	0,01	0,80	2,10
Saturated FA	2,91	0,49	0,99	10,47
Monounsat. FA	0,93	0,26	0,97	5,80

A lim

-

FA with good prediction (cow)

Sd: standard deviation

R2CV: cross-validation coefficient of determination

RPD= Standard error of cross-validation/Sd

Ratios with techno functional or nutritional interests

PLS 1	Mean	Sd	R2CV	RPD
LA/ALA (C18:2 9c12c/c18:3 n-3)	3,52	1,79	0,85	2,51
omega 6/omega 3	3,61	1,47	0,83	2,30
C18:1/C16:0	0,66	0,27	0,88	2,77
C16:1 9c /C16:0	0,05	0,01	0,87	2,63
C16 index	4,29	1,34	0,86	2,62
Atherogenicity index	3,39	1,09	0,87	2,69

A lin

N

WP3: phenotyping of protein composition

 Choose and establish a reference method for protein analysis: HPLC associated with MASS spectrometry

15 1.

-

- Create equations to evaluate milk content of some proteins from MIR spectra (in process)
- Fine protein content analysis of referenced milk (genotype and management of herd) to determine QTL or feeding strategy affecting protein composition (in 2010-2012)

WP4: farm collecting

1 500 farms

12 000 cows: 3 breeds (Prim'Holstein, Normande, Montbéliarde) with at least 15 bulls for each breed, 150 daughters for each bull, 10
« Phénofinlait » females in each farm

4 000 ewes: 2 breeds (Lacaune – Manech Tête Rousse)
36 rams, about 130 daughters for each ram

• **4 000 goats:** 2 breeds (Alpine – Saanen) 20 billy goats, about 200 daughters for each billy goat

1 1.

11

WP4: farm collecting

IN User

1

1 500 farms 20 000 "Phenofinlait" females

WP5: results valorization (by 2012)

A lim

1

- 1. Context and motivations
- 2. Background and objectives
- 3. Organization and 1st works
- 4. Financial support
- 5. Conclusions

- Apis-Gene
- ANR (French National Research Agency)
- CASDAR (Agricultural Development Fund)
- France Agri Mer
- European Union (EU)
- France Génétique Elevage (FGE)
- Ministry of Agriculture (MAP)
- Self-financing

- 1. Context and motivations
- 2. Background and objectives
- 3. Organization and 1st works
- 4. Financial support
- 5. Conclusions

Conclusions

• Ambitious program

1 4.

- All French dairy industry partners are implicated and concerned
- Diversity of stakes:
 - For the future: create knowledge basis for fine and ultra-fine milk composition, its control and its improvement
 - At medium-term: enrichment of selection program and farmer feeding and herd management advice
 - At short-term: analysis methods for milk composition validated and usable. Capacity to improve these methods. Experience to manage and treat this new kind of data.

Thanks to every partners of this project

Thank you for your attention !

phenofinlait@inst-elevage.asso.fr

PhénoFinlait

www.phenofinlait.fr