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Context

•
 

Consumers are aware of the food impact on their 
health, especially FA

•
 

In France, more and more farmers are paid on the 
FA composition of their milk

But…
⇒ No reference method to routinely analyze milk FA 

composition
⇒ No tools (animal genetic and feeding strategy) to  

adapt fine milk composition to consumers 
demand
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Goat milk characteristics

•
 

Higher concentration of short and medium chain 
fatty acids and lower level of palmitic

 
acid 

(Tomotake, 2006)
•

 
Fatty acid composition depends on diet but also 
on genotype at the αs1 casein gene (Mahé, 1994)
No knowledge at a large scale of factors affecting 

fine goat milk composition and of QTL responsible 
for the composition variation 



PhénoFinLait: aims
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•
 

Develop and control methods to analyze fine 
milk composition
•

 
High scale analysis of milk composition and 

implementation of a huge data base
•

 
Understand how genetic and feeding strategies 

impact fine milk composition 
•

 
Create tools (genetics + feeding strategies) to 

face evolving
 

consumer demands including health 
requirements



Method choice

•
 

MIR spectra routinely obtained by milk recording 
laboratories for fat and protein percentage 
measurements

•
 

Can also be used to predict FA composition in 
cow milk (Soyeurt

 
et al. 2006)



Prediction of FA composition
•

 
149 milk samples

 
from Alpine dairy goat analyzed 

by MIR spectrometry and gas chromatography
•

 
Spectra recording from 5012 to 926 cm-1

•
 

446 wavelengths
 

are kept (Foss, 1998)
•

 
No pre-treatments

•
 

In a first time development of predictive equations 
by PLS regression

 
for 64 FA and some ratios 

•
 

Good prediction for 9 FA
 

and correct prediction for 
8 FA: estimations not as good as in cow milk (16+14 
FA)



How to improve equations 
accuracy ?

•
 

Several authors
 

have suggested to apply a 
selection of variables before PLS regression

 
to 

improve results (Leardi
 

1998, Hoskuldsson
 

2001)
•

 
Genetic algorithms  already successfully used on 
IR data (Leardi

 
R. 1998, Gomez-Carracedo

 
2007)

•
 

Previous study in cow milk with good results 
(Ferrand, 2009)



Genetic algorithms method

•
 

Based on evolutionary biology
•

 
Principle: evolution of a population of solutions 
using genetic operators like reproduction. 
mutation and selection

•
 

Objective: obtain a population with the best 
solutions



N solutions generated at random

STOP

Each variable has a mutation probability of x% (1 no 
selected variable become selected and conversely)
Objective : avoid having a pool of uniform solutions

Substitution of  the 2 worst solutions by new solutions

Combination of 2 solutions
Objective : to obtain 2 better solutions
Limit : variability of solutions decreases

CREATION of  a NEW POOL  of  
SOLUTIONS

INITIAL  POPULATION : 
POOL OF SOLUTIONS (30)

POOL of  SOLUTIONS 
EVALUATION of  THESE 

SOLUTIONS

Possibility  of  MUTATION

Possibility  of 

CROSS-OVER

REPRODUCTION Selection of 2 solutions
The better a solution is, the highest the probability of being 
chosen is

R2CV
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Solution N

Var1 Var2… Var446
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Variable i takes value of  1 if selected , else 0.  R2CV  
is obtained by PLS regression on selected variables.

…
…

…

…

…

…

When quality of solutions is constant, algorithm is stopped.

Getting N solutions among the bestsFINAL RESULT

Random selection

Cross-over 
probability (50%)

Mutation 
probability (1%)

Random 
generation

Evaluation

= Random

adapted from Haupt (2004)
and Leardi (1998)



Genetic algorithms use

•
 

Use of the algorithm developed by Leardi
•

 
Check of the robustness by varying  parameters 
(previous study)

•
 

Fitness function: cross-validated explained variance
•

 
Population size: 30 solutions

•
 

Mutation probability: 1%
•

 
Number of GA runs: 5 (to ensure an optimal 
convergence)



Results: selected wavelengths

•
 

Selection in average of 72 variables
 

out of 446 in 
the form of wavelengths bands (46 in cow milk)

•
 

2272-1944 cm-1 band rarely selected
•

 
2970-2278 cm-1

 
and 2272-1944 cm-1

 
selected for 

most fatty acids



Results: improvement

•
 

Good prediction for 9 FA
 

and correct 
prediction for 10 FA

•
 

Accuracy gain of 7%
 

on average
•

 
Notable improvement for FA of a crucial 
interest regarding nutrition (C14:0, C16:0…)

•
 

Stabilization of the equations over the time



PLS2 GA+PLS1 or 
PLS2

Mean Sd SECV R2CV SECV R2CV Improvement

C12:0 0,134 0,041 0,023 0,69 0,019 0,81 18%
C14:0 0,307 0,077 0,034 0,82 0,029 0,87 13%
C16:0 0,996 0,197 0,059 0,92 0,053 0,93 10%

C18:29c12c 0,086 0,020 0,012 0,67 0,012 0,69 4%
C18:29c11t 0,017 0,005 0,004 0,45 0,003 0,55 8%
C18:3n-3 0,013 0,004 0,003 0,41 0,003 0,44 2%
Saturated 2,351 0,485 0,087 0,97 0,086 0,97 2%

Monounsat. 0,798 0,184 0,074 0,85 0,073 0,85 1%

Polyunsat. 0,128 0,028 0,018 0,63 0,016 0,67 6%
Trans 0,100 0,031 0,021 0,53 0,020 0,60 6%



Limits

•
 

High computing time required (3 hours per 
fatty acid)

•
 

Several manual stages: important error risk, 
variable results between individuals



Conclusions
•

 
Ambitious multispecies

 
program with a lot of 

stakes
•

 
Importance to produce robust and accurate 
equations 

•
 

Genetic algorithms before PLS regression is of a 
strong interest to predict individual milk fatty acid 
profile: improvement of the quality of the 
predictions and stabilization of the equations over 
the time

•
 

Validation with new data is planned in the future



Perspectives

Beyond PLS: alternative methods like wavelets 
•

 
Accuracy improvement?

•
 

Time efficient methods ?
•

 
Ease-of-use in routine ?

Multispecies



Thanks to every partners of this projectThanks to every partners of this project
 

Thank you for you attention !Thank you for you attention !
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